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Abstract—In Cognitive Radio Networks (CRNSs), secondary

at their own will and they do not make any reservation for

users (SUs) are allowed to opportunistically access thethe spcetrum usage. Hence, these existing auction schemes

unused/under-utilized channels of primary users (PUs). Taitilize
spectrum resources efficiently, an auction scheme is ofterpplied
where an operator serves as an auctioneer and accepts speatr
requests from SUs. Most existing works on spectrum auctions
assume that the operator has perfect knowledge of PU activés.
In practice, however, it is more likely that the operator only
has statistical information of the PU traffic when it is trading a
spectrum hole, and it is acquiring more accurate informatin
in real time. In this paper, we distinguish PU channels that
are under the control of the operator, where accurate channle
states are revealed in real-time, and channels that the opator

acquires from PUs out of its control, where a sense-before-

use paradigm has to be followed. Considering both spectrum
uncertainty and sensing inaccuracy, we study the social wlre
maximization problem for serving SUs with various levels ofdelay
tolerance. We first model the problem as a finite horizon Marke
decision process when the operator knows all spectrum reqsés
in advance, and propose an optimal dynamic programming bask
algorithm. We then investigate the case when spectrum requsés
are submitted online, and propose a greedy algorithm that id/2-
competitive for homogeneous channels and is comparable the
offline algorithm for more general settings. We further extend
the online algorithm to an online auction scheme, which engses
incentive compatibility for the SUs and also provides a way dr
trading off social welfare and revenue.

|. INTRODUCTION

are mainly applicable to spectrum resources that tend to be
available for relatively long periods of time. For instance
the interval between two adjacent auctions is assumed to
be 30 minutes or longer in [4]. However, to allow more
efficient spectrum utilization and relieve spectrum cotigas
spectrum holes at smaller time scales need to be explored.
A straightforward extension of current approaches to this
more dynamic environment would require auctions to be
conducted frequently, which would incur high communicatio
and management overhead. A more reasonable approach is
to again consider a relatively long period of time, where the
operator only has statistical information of the PU trafficem
trading spectrum holes. More accurate information is aegui
later in real-time.Therefore, an auction scheme that takes
spectrum uncertainty into account is needed.

To further improve spectrum utilization, besides trading
spectrum holes that are fully under the control of the operat
as commonly assumed in the spectrum auction literature, the
operator may choose to acquire licensed channels out of its
control to further improve social welfare or revenue. Toidvo
interference with PUs, aense-before-usgaradigm must be
followed in this case. The operator must first identify spawt
holes in a channel, e.g., by coordinating SUs to sense the

With the ever-growing demand for wireless spectrum, COQhannel, before allocating the holes to SUs. While spectrum

nitive Radio Networks (CRNs) have been proposed to betgeé

utilize spectrum holes in wireless networks.

erator serves as an auctioneer and accepts requests from

These frameworks are implemented via a resource allocati

nsing has been extensively studied in the CRN litera8]re [

) _In CRNSs, Seﬁl], [12], the joint problem of sensing and spectrum auctio
ondary users (SUs) are allowed to opportunistically actiess

channels of primary users (PUs). To utilize spectrum resssur
efficiently, an auction framework is often applied where an o

remains unexplored.

In this paper, we propose a spectrum allocation framework
that takes bottspectrum uncertaintand sensing inaccuracy
MtG account. In particular, we consider two types spectrum
{¥dources: PU channels that are under the control of the

and a payment scheme with the objective of maximizing eithghe aior, and the channels that the operator acquires from

social welfare or revenue [2], [4]-[6], [16].

Most existing works on spectrum auctions, however, assu
that the operator has perfect knowledge of PU activities in

PUs out of its control. In practice, wireless service prevel

r(W/SP) act as operators, and they may cover areas that almost

c%mpletely overlap. SUs registered with one of them may

given period of time. They ignore the uncertainty of channgl.oqq spectrum from other WSPs as will be introduced in our

states caused by the uncertain and frequent PU usage.

instance, in cellular networks, the subscribers accessneis

fdldel. In both types of channels, PU traffic on each channel
is assumed to follow a known i.i.d. Bernoulli distribution.
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be learned accurately by the operator. For the second type
of channels, a sense-before-use paradigm must be followed,

"Where a collision with the PU traffic due to sensing inaccyrac

incurs a penalty.



Using a fixed set of channels of each type, we study the joint freauency

spectrum sensing and allocation problem to serve spectrum
requests with arbitrary valuations and arbitrary levelsieity
tolerance. The objective of the operator is to maximizeaoci
welfare, i.e., the total valuations obtained from sucadbsf
served requests minus the cost due to collisions. We canside
both the scenario where the operator knows all spectrum
requests in advance, and the setting when spectrum requests Operator L
are submitted online. While our online setting is similar t@ig. 1. system model of the CRN. In the left figure, small eischre SUs,
the online spectrum auction schemes considered in [3], [15uares represent PUs registered at the operator, anglésaare PUs out of
the key difference is that sensing inaccuracy is not consitie the operator’s control. The big circle is the coverage afeheoperator. The

. . . ht figure shows the availability of channelsih andT%. For T} channels:
in these existing works. Hence, the approaches in [3], [1§£1neans idle state antimeans busy state. F@k channels, the first element

can only be applied to cases where accurate real time chanagksents the actual state {dle; 1: busy) and the second element represents
states are obtainable, which is not always the case. the sensed stat@(sensed idle]l: sensed busy).

Our contributions can be summarized as follows: aware of the downlink activity of its own PUs at the beginning

« We model the joint sensing and spectrum allocation probf each time slot. The set of the spectrum bandanaged by
lem as a finite horizon Markov decision process whethe operator is denoted ti#;. However, the activities of PUs
all spectrum requests are revealed to the operator offlim@t managed by the operator are unknown. Bands accessed
i.e., ahead of time. We develop an optimal dynamigy these PUs are denoted BYy. To access bands if,, SUs
programming based algorithm, which serves as a baselgsoperatively sense them and report their sensing results t
for the achievable social welfare. the operator. The operator then makes a fusion decision on

» We propose a greedy algorithm for the case when spehe activities of bands iff, and selects a subset of channels
trum requests are submitted online. We prove that tkensed idle to serve the SUs. We only consider the set of
online algorithm is 1/2-competitive for homogeneouPUs located in the coverage area of the operator so that all
channels, and we show that it achieves performansgs in the system have the cognitive capability and can sense
comparable to the offline algorithm for the more genergpectrum in7,. We assume that the sensing cost is low and
heterogenous channel case by numerical results. even negligible. In practice, wireless service provid&wSp)

« We further extend the online algorithm by proposing aact as operators, and they may cover areas that almost pverla
online auction scheme, which ensures incentive comp&ts registered with one of them may access spectrum from
ibility for SUs and also provides a way for trading offother WSPs as introduced in our model.
social welfare and revenue using a reservation price.  We assume that the spectrum bandgjnand 7, have the

The paper is organized as follows: The system modghme capacity, which is normalizedtoPU activities on these

and problem formulation are introduced in Section Il. Owhannels follow an i.i.d. Bernoulli distribution in eachmt
solutions to the problem with offline and online requests agot. For instance, in Figure 1, there are three channels in
presented in Sections Il and 1V, respectively. Our onlinend two channels iff,. In time slot1, channels 2 and 3 in
auction scheme is then discussed in Section V. In Section VI, are idle and channel 1 iff;; is idle. However, channel
numerical results are presented to illustrate the perfoomaf 1 in 7% is sensed busy and it will not be allocated. Also,
the greedy online algorithm in general cases, and the tfadeghannel 2 irT; is incorrectly sensed to be idle and scheduling
between social welfare and revenue. We conclude the papgequest on this channel will lead to a collision. We7et:)

in Section VII. denote the probability that chanrigh T is idle andr, () the
probability that channef in T3 is idle. We also assume that
the prior distribution of the PU activity is accurately aogd

We consider a cognitive radio network with a single operatorver time. We assume that state changes occur at the beginnin

and multiple SUs registered with it (see Figure 1). Thgf a time slot. LetC' 2 |T1| + |T5| denote the total number of
operator manages multiple orthogonal channels and csntrghannels, which remains constant over time.

the corresponding network composed of PUs. We focus onThe availabiliies of channels i} and T, at ¢ are
dovynllnk transmission at the operator Wlth power controjenoted by binary vectors; (t) = (IMt),--- , IF(t),---)
A time slotted system is considered with all PU and SYpq fQ(t) = (I3(t),--- ,I(t),---), respectively, where)

transmissions synchronized. All SUs are assumed to be in fa@resents idle and represents busy states. MoreovE()
interference range of each other and that of PUs, hence, eggfiotes the sensed availabilities of channel§rat t. Let
channel can be assigned to at most one SU at any time Whenx) 1 < 7,, denote theprobability of false alarm for
it is not used by PUs. In this paper, we focus on the tempot@annelk, i.e., the probability that SUs cooperatively sense
reuse of spectrum, and we will consider spatial reuse [3], [$hannelk to be busy given that it is actually idle. L&,, (k)

[15] to further improve allocation efficiency in the future.  yepresent therobability of misdetection for channelk, i.e.,
The spectrum pool consists of two types of channels, those

managed by the operator and those that are not. The opeyatoriwe use channel and spectrum band interchangeably.

1 0 1 0 1

T, 0 0 0 0o 2

0 1 1 0
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T, |
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II. SYSTEM MODEL AND PROBLEM FORMULATION



TABLE |

NOTATION LIST 0 otherwise. Lety; denote the service indicatoy; = 1 if
| symbol | Meaning | request is_served byd;; yi =0 otherwise. The social welfare
N Set of spectrum requests submitted to the operator maximization problem is then formulqted as follows, where
T1 Set of channels managed by the operator Z(-) denotes the number @f elements in a vector:
T> Set of channels not managed by the operator Problem (A)
m1(i) | Probability that channel in T is idle max E11712, {Z yiw; — Q Z Z Z it 12 }
m2(j) Probability that channej in T% is idle iEN ieEN €Ty t=1
c The total number of channel€(= |11 | + |T3) d;
I:l(t) Availabilities of channels irfil’; at ¢ s.t. Z ( Z le _|_ Z CUzk 1 — ]2( ))) >y, (1)
I (t) Availabilities of channels iril> at ¢ t=a; €Ty kET,
f;(t) Sensed availabilities of channelsi® at ¢ foralliec N
Py (k) Probability of false alarm for channél € T
P, (k) | Probability of misdetection for channél € T Z Z za(t) < Z( 11( ), forallt=1,--- H (2)
Pr(k) Probability that channet is sensed idle iEN IET
Py (k) Probability of channek being idle given that it is sensed idle Z Z xzk < Z 12( ))’ for all t — 1, ,H, (3)
a; Earliest service time for request SN heTy
d; Deadline of request .
w; Valuation of the request wherex = (Iil(t))i,l,t- Yy = (?ﬁ)ie/_\f- I, = (Il(t))tzl,---,Ha
H The time period where spectrum allocation has to be made I = (L2(t)i=1,..n, I3 = (I5(t))¢=1,....u. The cost
r Maximum number of outstanding requests in the system at iamgy Q Zie/\/ ZleTg Zil Tl (t)Ié (t) takes into account the cur-
Q Penalty price per collision rent availabilities of channels ifi;. Inequality (1) reflects the

relationship between the allocation indicatey(¢) and the
the probability that SUs cooperatively sense charin@ be service indicatory;. Inequality (2) guarantees that a channel
idle given that it is actually busy. Our problem formulat@md in 7, will not be allocated unless it is observed idle. Likewise,
solutions are independent of the cooperative sensing shapequality (3) guarantees that a channelZin will not be
used. We further defin@; (k) as the probability that channelallocated unless it is sensed idle.
k is sensed idle and%(k) as the conditional probability The challenges of Problem (A) are threefold: 1) The re-
of channelk being idle given that it is sensed idle. Noteyuests are uncertain since they may be submitted at differen
that Pr(k) = ma(k)(1 — Py(k)) + (1 — m2(k))Pn(k) and time slots; 2) Spectrum availabiliies &f; and 73 in the
Py(k) = w. We assume tha?; (k) and P, (k) are future are not known at the current time slot; 3) Sensing ts no
constant for any channél € 75, which occurs e.g. when SUsaccurate for channels ;. In the following, we propose an
are static in the system. Some of our technical results applyoffline optimal solution in Section Ill and an online solutio
the special case when all channelg/inarehomogenoughat in Section IV. We define the offline algorithm as an algorithm
is, when the channels have the saméi), P, (i) and P,(i). that decides the channel allocation for outstanding regues
Thus, they also have the sanig(i) and Py (i). each time slot with only the observed availabilities of aels

We assume each spectrum request is for a Sing]e til’ﬂ%-Tl and sensed availabilities iﬁg of the current slot. All
frequency chunk, i.e., a single time slot of any channel figquests, including future arrivals, are assumed to be know
Ty or T,. Each request submitted at time is of the form For instance, SUs submit their requests at the beginning of
(ai,d;, w;), wherea; > t is the required service starting time /1. The operator then knows the full arrival information. In
d; is the deadline, at the beginning of which requektaves €ach time slot, the operator has to make channel allocation
the system, andy; is the valuation of request which will decisions based on the observed availabilities of its own
be added to the social welfare if requests served byd;. channels and the sensed availabilities of channels mariaged
We denote the set of requests By = {1,--- ,N}. H = otheroperators. The only difference between online antheffl
max;en d; — mingen a; denotes the time period spectrunlgorithms is that online algorithm does not assume the full
allocation needs to be made, andn;c, a; is normalized arrivalinformation to be known ahead of tintgoth algorithms
to 1. The maximum number of outstanding requests in tre designed under the challenges of spectrum uncertairdy a
system at any time is denoted asTable | summarizes the SENSINg Inaccuracy.
notations used in the paper.

We are interested in maximizing the social welfare of the
operator and the SUs in the system, which is defined as thén this section, we study Problem (A) under the assumption
total valuations from the requests successfully servediby that the operator has full knowledge of the spectrum reguest
deadlines) minus the collision cost to channels/in Let  in advance. By our assumptions on channel statistics, the
denote the penalty incurred per collision. Lei(¢t) (: € A/, problem can be modeled as a finite horizon Markov Decision
leTyUT, t=1,---,H) denote the allocation indicator: Process (MDP) [14]. In this section, we propose an optimal
z;(t) = 1 if request: is allocated to channélat ¢; z;(t) = dynamic programming based solution to the problem. We start

IIl. OPTIMAL OFFLINE ALGORITHM



with the simple case wher&, = () and all the channels for form D’ based onD as follows: If requesin is allocated to
serving SUs are i1, which models the case where all thehannels inSy, then removen from D, which means it is
channels owned by the operator are overloaded by PU traferved and the request no long exists. If requesiatisfies
Then, we proceed with the general case where Bptand7> a,, = t + 1, then addn to D, which indicates it is a new
channels are available in the system. In each time slotdbasequest. Among the remaining requests, those that expire at
on the knowledge of the spectrum requests and the currém beginning of + 1 are removed fronD.
channel state, the operator makes a joint decision inautljn ~ Based onX (D, S, t), we calculateF'(D, t) as follows. The
which subset of requests to schedule; 2) which subset of chawpectation inF'(D, ¢) in the form of the product of; (1) and
nels to allocate; 3) which request to assign to which channél — P;(m)) takes into account all realizations .
In our solution, we consider all possible scenarios for each
time slot and find the schedule that maximizes the expefé@’t) = Z HPI(Z) H (1= Pr(m))X(D,5,t) (5)
social welfare. We show that our algorithm has a complexity SCTy €5 mET\S
of O(273% (max {C,r})™" ¢ HCr). When (a;,d;) of re-  In Algorithm 1111, our objectiveF'({i : i € N,a; = 1},1)
quests do not have a dense overlap, e O(log N) where is calculated by dynamic programming. It first calculates th
N is the total number of requests [b, H], our algorithms maximum social welfare and the corresponding schedule for
are of polynomial complexity. We also provide importangach time slot, and then specifies the real time operations.
structural properties which further substantially reduibe Lines 1-5 calculateF'(D,t) backward fromH to 1 given
complexity and help design a simple online greedy algorithithe initial condition defined earlief (D, H + 1) = 0 for

We first defineF'(D,t) as the maximum expected sociabll D. Line 4 calculates the optimal scheduling policy for
welfare from the beginning of slat till the end of slotd time ¢ given D, the request set$, the set of channels sensed
given that the set of outstanding requests at tinie D. The idle; andS;, the set of channels sensed idle and actually idle,
expectation takes into account all possible channel r@#dizs according to Equation (4). The value &f(D,t) is updated
and sensing results. We defiiéD, H+1) = 0,VD. Our goal in Line 5 according to Equation (5). The complexity of the
is to calculate'({i : i € N,a; = 1}, 1) (Algorithm I1l.1). We  Equation (5) isO(3/"!(max {|T5|, })™m {72173 7y |r): The
calculate it backward fromh = H till ¢ = 1 is reached since number of possible channels realization8/#s! since different
requests requiring service in future time slots have an @npaocial welfare values will be generated in the cases where
on the current optimal scheduling decision. Note that at atlye channel is sensed idle but actually busy, it is sensed
time, it is sufficient to consideD in F'(D,t)’s for being any idle and actually idle, and all other cases. It takes at most
subset of the requests that satiafy< ¢ < d;. (max {|Tp|, r})™»{IT2l.7} combinations to find the optimal
A. With no available channels i x in Equation (4). The complexity for the calculation of

When no channel is ifi', the spectrum bands managed b%‘l/(D’S’ S1.x(t), 1 is O(|T3[r). On the other hand, givef
e

the operator, SUs can only be served by channelgirsUs e number of possible argument combinationsHD, t)
may request spectrum in arbitrary time slots. The success'%fq(%H) by assurjnptéon. The total time c_omplexny IS
serving request contributesw; to the social welfare while the O(2"3" (max {C, r})m S HOr). Note thatC is assumed
assignment of a request to a busy channel causes coIIisi(Jﬁst,’e a constant in our model. When there are only homoge-
incurring a penalty of). neou.STQ channels, allocation to different channeléﬂjjmgkes

We define X (D, S,t) as the maximum expected social'® difference. Then, we can _replaccmﬁxéc,r})mm{ i
welfare from¢ (¢ = 1, -- - , H) to the end of the period, givenWith 2", resulting in a complexity o0 (2*" 3% HC'r).
that the set of outstanding requestsZisand channels is B With at least one channel ifi
are sensed idleS( C 7). The expectation is taken over all With channels inTy, requests can be served by channels

possible realizations df,. Then, in both Ty and75. Since the channel availabilities @f are
known at the beginning of each time slot, they can serve SU
X(D,S,t) = max [ > I R@W JI (1—=Po(m) requests without any cost. Thus, once observed idle, channe
* 51CS €S meS\S: in T} could be assigned to requests so as to maximize the sum

(W(D, S, S1,x(t),t) + F(D',t + 1))} L (4) pf valuations. Our fpcus is stiII_the allocation of channald’
if they are sensed idle. The differences from the case withou

whereW (D, S, S1,x(t),t) T, channels are as follows: 1) All realizations if needs to
be taken into account; 2) In a scheduWé), assignment of
= Z Wn Z Tnk(t) = Q Z m”k(t)} any request to a channel ifiy causes no cost. The detailed

neb — keS RES\S1 algorithm can be found in our online technical report [10].

is defined as the social welfare achieved in time s|ofor Correspondingly, the algorithm for the general case is
a given D, the set of outstanding requests;C T, the set similar to Algorithm I11.1 except that in Line 4, the allodans

of channels sensed idl&; C S, the set of channels that areof 77 channels is included and in Line %/(D,t) needs to
sensed idle and actually idle; amdt), the channel allocation take into account all realizations df. Following a similar

at t. Recall thatx,,(t) is the allocation indicator used toargument as in the case whef& | = 0, the total time
determine whether the SU is served by this allocation. Wemplexity is still O(2"3¢ (max {C,r})™ 1€} [ Or).



Algorithm 1ll.1 Dynamic Programming based Optimal Algorithm for Social fald Maximization

Offline computation
1: for t = H to 1 do
22 forall DC{i:a;, <t<d;}do

3: for all S C 1T, do
4 X(D7S7t)<—max[ S IR0 I 0-Rm)( S (. X owl®)-Q X ew®)]+F(D,t+1))
x(t) | s1Cs1es, meS\Sy neD kESY keS\Sy
5: FD,t)« > [T P II (1=Pi(m)X(D,S,t)
SCTs les meT\S

Real-time scheduling

1: At each time slott with a set of request® that are currently in the system and a set of chansekhat are sensed idle, allocate
channels to the requests based on the schedulethat maximizesX (D, S, t).

C. Discussion Po(k)w; > Q(1— Py(k)). We utilize these propositions in the

In this section, we prove some structural properties 8'185'gn of our online algorithm.
the optimal solution, which helps to further reduce the time
complexity of the algorithm and also provides insight to the IV. ONLINE ALGORITHM
design of the online algorithm discussed in Section IV. Note
that at any timet, for an active request and a channel
k € Ty that is sensed idlePy(k)w; — Q(1 — Py(k)) is the
expected immediate social welfare contributed by requést
1 is assigned td: in the current slot. Proposition Il.1 shows
that a non-negative immediate social welfare is necessary
requesti to be served by channél in the optimal solution,
which turns out to be a sufficient condition in certain scenar
as stated in Proposition I11.2, as well.

In this section, we introduce a greedy online algorithm
(Algorithm 1V.1) that does not need future arrival inforret.
For systems where requests are not submitted ahead of the
required service starting time;, the online algorithm makes
gecisions based on the information available in the current
slot. An online algorithm for a maximization problem dis
competitive (¢ < 1) if it achieves at least a fraction of the
objective value of an optimal offline algorithm for any finite
input sequence [1], whereis called acompetitive ratio We
Proposition [Il.1. At any timet, if a requesti is scheduled show that the greedy online algorithm is 1/2-competitive fo
on channek € 75 in Algorithm 111.1, thenPy (k)w; > Q(1 —  homogeneoud’ channels in Proposition 1V.1, and achieves
Po(k)). performance comparable to the optimal offline algorithm for
Proof: See our online technical report [10]. m the more general heterogenous channel case by numerical

Proposition 111.2 shows that the conditid®y (k)w; > Q(1— results (see Figure 2(b)).
Py(k)) is also sufficient for a request to be scheduled for In Algorithm V.1, the main idea is to (greedily) offer
homogenous channels. To simplify notation, we drop thexndéequests with higher valuation channels with better gyalit
for channel related parameters for the homogeneous caseWe definec 2 Q(1 — Py(k))/Po(k), which is the expected

Proposition 11.2. In a system with no channels i and cost of serving one request on chanke{will be shown in

homogeneous channelsih, if there exists at least one request€mma 1V.1). Note that,, = 0 for k € T;. Lines 2 and 3
i that satisfiesPyw; > Q(1 — P,) in a slott and there is at SOt channels sensed idle by and current requests by;,
least one channel sensed idle, then in the optimal solutiéfSPectively. Since accessing channel§iincauses no cost if

at least one of the requests satisfying this condition wll ebserved idle, they are allocated first to requests withésgh
scheduled. for alk. valuations (Lines 5-8). In Lines 11-13, the remaining resisie

Proof: We provide a proof sketch due to page Iimits‘?‘re allocated to channels i, sensed idle from highest

The detailed proof is in our online technical report [10]islt valuation to lowest if they satisfy, > (k) where (k)

equivalent to show that for any schedule at timeadding a Serves as a thresh.old.for using chanheive se:\t_e(k:) Ck

o S : in this section, which is motivated by Propositions Ill.1dan
request: with Pyw; > Q(1 — Py) to it will achieve at least . . .

: I]l.2. Setting different thresholds provides a way for iray
the same social welfare as before. We compare the expect . .
. .Off the social welfare and the revenue of the operator, which
social welfare of these two schedules, and observe that it I3 . . o .
sufficient to prove thaly F({i}. ¢) < w; Py — Q(1 — Py) for will be discussed in detail in Section V.
0 1y,0) S wilo — — o . . . .

all £. We show this result by induction. The time complexity of Algorithm V.1 isO(C'logC' +

Based on these propositions, we can reduce the candidgalt%g.r) since the compl_exny Of. sorting in Lines 2 and 3
L . . ominates that of allocation in Lines 4-13. We then show that
set of requests for scheduling in each time slot. For ingtan

; _ - e greedy online algorithm is 1/2-competitive wh@h| = 0
no reque§t§ should be §cheduled3@)f(k)wz S.Q(l Po(k.)) and channels i, are homogeneous in Proposition IV.1. To
for all existing requests and all & sensed idle. Also, in a

) . . establish this result, we first show thatis the expected cost
system with no channels if; and homogeneous channels in .
]eyr a request served by chaniein Lemma IV.1.

T,, the candidate set is composed of all requests that sati®



Algorithm 1.1 Greedy Online Algorithm any request that is scheduled offline but not online. Since

In each time slot: requesti is not scheduled online, it is present at timand

1 if D = 0 then exit o . . the greedy algorithm schedules another reqyestthat slot,

2: Sort channels i§' (sensed idle irl2) by c; in ascending order g yg|uation of requestshould be as least as large as that of
3: Sort requests itD (outstanding ones) by; in descending order . . :

2 i1 req.uestz_. For any request that is allpcated offline gnd also
5: for all [ in I’ (channels in7, observed idle)Xo online, it mak_es the same co_ntnbutlon to_the social welfare
6:  xu(t) « 1; D« D\ {i} Then the offline solution achieves a social welfare at most
7. if D =0 then exit twice that in the online solution sincgfi]T > 1. Therefore,

B il . Algorithm IV.1 is 1/2-competitive whetld - oc. [ |

9: if D = () then exit . o

10: 0 |T) + 1 Note that the factor 2 in Proposition V.1 does not depend
11: for all k in S (channels sensed idle ifi,) do on request arrival patterns or channel related parameters.
12:  if w, < 6(k) or D = ) then break Algorithm V.1 can always achieve at Iea%t of the social

130 2k 1L, D« D\{n}in<n+1 welfare of the optimal offline algorithm (Algorithm I11.1) aen

. ] . the system is only composed of homogenedigshannels.
Lemma IV.1. For the greedy online policy;; is the expected

cost of serving a request on chanrieivhen H — oc. V. ACHIEVING INCENTIVE COMPATIBILITY
: : When the available spectrum resource cannot satisfy all the
Proof: Let Aj. denote the the number of time slots after P fy

the last request is served by chanheéh Algorithm IV.1. We requests, Whi,Ch is oftgn the case, a selfish SL,J may choose
haveA)/H — 0 if H — oo. Consider the time interval right tobtcheat on its v_?lua:ctlgn_ or arnva(\jl z;nd hdetad:me_ t;)mdels to
after a request is served by chanrelnd before the next O°tall SOME priorily of being Served. such strategic belrav

request is served by channiel Remove all time slots in the leads to a less efficient system. In this section, an online

interval when there are no requests in the system or chaﬂné’}ucupn scheme_is presented, which L_Jtilizes the onlinedyree
is sensed but not allocated. Given that a channel is senked ialgor'thm (Algorithm I\,/‘l) together with a payment scheme
the probability that collision happens Is— Py (k). Thus the to suppress the cheating behavior. We first develop a natural

number of slots where collisions happen follows a geometlﬁ’@ymem scheme that useg, the expectgd co;t for Serving
Jequest by channé!, as the reservation price for using

dlstr|but|on and the expected cost per a request service aannelk, and show that the mechanism achieves incentive
channelk is Q(1 — Py(k))/Po(k). [ | S :
Based on Lemma IV.1, we show the competitive ratio Ocfompa'ublhty (formally deflned_below). For _heterqgeneous
Algorithm 1V.1 for homogenoud’ channels. channels, however, such a variable reservation price has th
N ) weakness that the payment charged to an SU not only depend
Proposition IV.1. If [T1] = 0 and channels irl; are homo- o the valuations of SUs but also the particular channel that
geneous, Algorithm IV.1 is 1/2-competitive whgn— oc. serves the SU. Hence, two SUs with the same valuation
Proof: Let the random variabley denote the set of served simultaneously may be charged different pricesIgimp
requests that are eventually served by the algorithm. Lgécause they are served by different channels. This leads to
Py = Py(k) for any channek € T». Since the channels ifi,  arbitrary and unfair treatment of SUs. To avoid this issue,
are homogeneous, we have= Q(1 — Fy)/ Py, which is the we also introduce a fixed reservation pricing scheme that is
expected cost for serving a single request in Algorithm IV.jhdependent of channel assignment, which also provides a
when H — oo by Lemma IV.1. Then the expected sociamore straightforward way of trading off social welfare and
welfare achieved by Algorithm IV.1 can be written as followsrevenue. The revenue of the operator is composed of two: parts

N payments collected from the SUs by serving their requests an
Z [( Z Pr(v) Zwi) — kePr(|y| = k)} the penalty paid for causing collisions. For an actual bessn
k=1 |y|=k iy model to be viable, it is important that the revenue of the

N operator is taken into account.
= Z { Z Pr(v) Z (w; — c)} (6) A. Online Auction with Variable Reservation Price
k=1 "|y|=k i€y In this section, an online auction scheme using a variable

Let~/ denote the set of requests that are eventually servedrgervation price is presented (see Auction 1) to supphess t
the optimal offline algorithm, then serves as an lower boundcheating behavior of SUs. At any time slgt the operator

for the expected cost of serving a request by ignoring the timaccepts bids of the forn@di,di,wi), wherea; = t and d;

slots after the last request is served. Hence, Equation ifB) wdenote the reported required service starting time and the

~ replaced byy’ serves as an upper bound for the expectetbadline, respectively, and; denotes the reported valuation.

social welfare achieved by the optimal offline algorithm.  All these values could be different from the true values of
Note that the greedy algorithm always chooses the actikequesti. We assume there is no early-arrival misreport and

request with highest valuation. For any sample path, censidate-departure misreport in the system, thatdis,> a; and

the set of requests served by the optimal offline algorithdh < d; in any bid. In practice, both of them can easily be

and those by the greedy algorithm withf = w; — ¢ as the detected since the request is no longer in the system when

valuation. We follow the same argument as in [7]: We consideither misreport occurs.



Let p; denote the payment that the operator charges a $tuests are charged different prices even if they havestne s
for having its request served. Thenet utility for request; is valuation and face the same competitive environment. lgeal
defined asu,; = w; — p; if requesti is served and:;; = 0 we would like to hide such resource heterogeneity from SUs.
if not. A mechanism is said to b#dominant-strategy incentive
compatible(DSIC) if for any given sample path of channeB. Online Auction with a Fixed Reservation Price
state realizations and sensing realizations and a set 0ésts)
each request maximizes its utility when it truthfully relsethe
private information independent of the bids from other exis
(adapted from Definition 16.5 in [13]).

To overcome the weakness of the variable reservation pric-
ing scheme for the heterogenous channel case, we consider
a fixed reservation price in this section. Létk) = ¢

In Auction 1. ch I aned t ‘ din Auction 1, whereq is computed using channel related
n Auction —, channels aré assigned to requests accor ameters, and is fixed for a given set of channels. Note

to Algorithm V.1 by settingf(k) = c, where a request that the mechanism is still monotonic, hence, DSIC is still

is assigned to channet only if its valuation is higher gngreq in this case. Settingto different values provide a

than c;. Hencec; serves as a reservation price. For ever\)oay for trading off social welfare and revenue. At a very low

request succes_sfull_y served by its deadline using C_hahne_lreservation price, the payment collected cannot recoeeexh
the charged price is the maximum of the reservation pri
¢, and and a critical value. Aritical value is defined as the

maximum reported valuation under which it will not be serve

assuming the other bids are fixed. Note that by the definiticme other hand, when the reservation price is too high, fewer

of payment, the net utility of a SU is always non-negatlvge uests will be accepted, which harms both social welfade a
and the revenue of the operator never exceeds the so éch

i Furth ) Cis | bounded enue. Furthermore, the optimal social welfare and regen
wellare. Furthérmaore, since a payment I lower bounded By, usually achieved at very different reservation prices (
the corresponding reservation price, a non-negative éggec

f th is obtained for | m Figures 3(a) and 3(b)). In this section, we would like to find
revenue of the operator is obtained for large enouglby a reservation price that matches the average expected cost

?)Eécted cost and hence the average revenue becomes negative.
A low reservation price may also harm social welfare by our
ecessary condition for serving requests (Propositioh)lIDn

Lemma I\_/'l' A q h for serving a request, such that nearly optimal social welfa
Atu:ftlontl. Ifiequests(ai,di,wi) are reported to the operatore,, pe achieved while ensuring te&pectedrevenue of the
at timet = a;.

_ he bedinni ‘ n al di operator to be non-negative.
() At the beginning of each, allocate requests according to Consider any given set of requests. Uegt denote the

A“Igorlthm IV.1 by settingd(k) = cx. expected fraction of requests served by channekith the

(ify A request successfully served by chanhgdaysmax(c,  gypectation taken over all possible channel and sensing re-

the critical value), collected at its reported deadline. alizations. Then by Lemma IV.1, for large enoudh, the
According to Theorem 16.13in[13], to showthatAucuon_]aVerage expected cost per request can be represented as

is DISC, it is sufficient to show that the mechanism is, éz . Note that, for homogenot& channels
monotonic in terms of both valuation and timing. That is(?, = Zujenum ST ' 9 '
= ¢; for any j. For heterogenous channels, however,

for a given sample path of channel realizations and sensi irgding the accurate value of is hard, if not impossible,

r§allgat[ons gnd a set. of requests, i reques bmitting a b!d without accurate knowledge of the request set. We therefore
(a;, d;,w;) wins, then it continues to win if it instead submits a . .
bid (a!, !, ') with @/ > w, & < a5, andd! > d;, assuming consider an upper bound af that can be computed using
¢ . ol (= channel related parameters only. To this endyJjetlenote the

other bids are fixed. This condition can be easily verified. SOrobability that the channglis sensed idle and it is really idle.
hent = 7T1(j) if jE Ty, andvj = P](])Po(]) if jE .

Auction 1 is DSIC. Furthermore, a binary search algorithm ca}F

be applied to find the critical value for requests succelgsful : ] _

served, which is presented in our online technical rep@t.[1 We then definen; = Op—— and use it to estimate.
Remark:In a traditional VCG like auction [13], the pay-Note that,m; = n’ when the system is always overloaded,

ment charged to a winning bidder is only determined by tHbat is, if whenever a channel is (sensed) available, it gll

valuations of other bidders competing for the same resourtised to serve some active request in the system. Now define

In Auction 1, due to the heterogeneity of spectrum resourcg, 2 ZjeT1UT2 cjm;. Since ¢ only depends on channel

however, it also depends on the particular channel thaeserparameters, it can be easily computed. Note that ¢’ for

the request. For instance, consider two heterogenédus homogenous channels. We will show that> ¢’ and therefore

channels withe; < cg, both of which are sensed idle anda non-negative expected revenue is obtained ugings the

really idle at time slott. Assume that two requests of sameeservation price in Proposition V.1. Furthermore, using

valuationw > c arrive att and expire at the beginning ofalso achieves good performance in terms of social welfare as

t+ 1. Sincew > cy, the greedy algorithm will serve requesshown in numerical results (see Figures 3(a) and 3(b)).

1 by channel 1 and request 2 by channel 2. For request 1, thén the following, we assume that channels have been sorted

critical value isc; since given that request 2 reports a valuatioy a non-decreasing order of. We start with Lemma V.1
of w, request 1 will be served iff it reports a valuation highefhat provides a sufficient condition far > ¢’

thanc¢;. Hence, the payment charged to request 1 is also . n
Similarly, the payment charged to request 2cjs The two Lemma V.1. If 2= < &

Vi

~— for all j, theng; > ¢'.
Jt1




Proof: We calculat_eql —q =3 cnun, gj(mj —nf}). H—E(A) > H—- E(B). It the_zn foII_ows thatg;y > ¢’ by
In the following, we will show that there existssuch that Lemma V.1. Hence, a reservation price@fleads to a non-
for all j < i we havem; < n’ and for allk > i we have negative revenue at the operator. |
/ . ms n/. P .
my, > ny,. Since mjil < "’jil for all j, it is .easy to see that: Vi
if m; > n’j, thenmy, > nj by multiplying Tt . . . _ .
"l o ) ) I kot ~In this section, we evaluate the performance of the greedy
i—; T respectively, on both sides. Then we can fingpjine algorithm (Algorithm 1V.1) and the tradeoff between
suchi. We divideq; — ¢’ into two parts: social welfare and revenue for different reservation [xite
first show the performance of the greedy online algorithm

!/ __ . L / _ /
=7 = ZCJ (m —n;) + ch(m’“ ) (1) compared with the optimal offline algorithm under different

. NUMERICAL RESULT

Jsi ki channel settings and request related parameters, respgcti
If i = |Thl + [T, @ —¢ = > c¢i(m; —nj) > We then apply Auction 1 with varying reservation prices and
JETIUT, show the performances of social welfare and revenue.
( max C_j)( >oomy— > ng) = (. max ¢;)(1 — We let the arrivalsa; of requests follow a Poisson dis-
JENVT, JETIUT, JETIUT, JETUT,

tribution and the duratiord; — a; of the requests follow

— M. . _ / -y
1) = 0. I.f i = 0, then all terms g — g are posmve_. Next an_exponential distribution. The valuations follow a unifo
we consider the case where neither sums in Equation (7) ra;'?\ss

no terms. Since all terms in the first term in the sum are tribution in [1,15]. We choos& = 10, the penalty per

o . . collision, comparable to the valuations in all our simdas.
non-positive and all terms in the second term in the sum &% fix the number of requests 29 and the inter-arrival
positive, we obtain q '

mean as3 slots, and vary the mean of request duration to
q1 — ¢ > (maxc;) E (mj — n;.) + (mincy,) E (mg —n},) adjust the density of requests. Given the means of int@rarr
<1 k

I= j<i > k>i and request durations, we generd@ groups of requests
@) and compare the average f(_)r _the_ metrics_we consider. We
> (max Cﬂ')(z (m; — n’j) + Z (my, — n%)) generate the channel availabilities in each time slot based
isi i<i ' [y our assumption that channel states follow an i.i.d Bermoull
distribution and100 samples of channel realizations are taken
= (mgx Cj)( Z m; — Z n;) =0, for our simulations. The channel parameters we use will be
= JETIUT, JETIUT, introduced in Section VI-A.
where (a) is by the assumption that < --- < ¢y j41,- A, Performance of Greedy Online Algorithm
Henceq; > ¢’ holds. [ |

Based on Lemma V.1, we claim that a reservation price o_lErl]n 'I:\'/gfre _tﬁ(?r)]’ tW? A(\:lompt?]re Itlrl]i pﬁrforg:ance oft:Igo-
q1 results in a non-negative revenue for the operator. rithm 1.1 wi at o Algorithm 11.1 when there are three

homogeneoud; channels in the system withy = 0.6324,
Proposition V.1. The operator obtains a non-negative exp, — 0.2218, P; = 0.6595 and various number off}
pected revenue with reservation prige when H is large channels. The-axis denotes the achieved performance ratio,
enough. i.e., the ratio between the social welfare of the online atgm
Proof: It suffices to show thaty; > ¢'. Consider a ang that of the optimal offline algorithm. Whe, | = 1, we
given set of requests and any sample path of channel state§.., — (.5058; When ITy| = 2, we setm;(1) = 0.8147
Without loss of generality, consider the first two channels iand 7, (2) = 0.1270. We observe that the performance of
the sorted list. Let; andn, denote the number of requests|gorithm IV.1 degrades af | increases, independent of the
served by channel$ and 2, respectively. Lets; denote the request duration mean. With a high numberZf channels,
number of time slots that are sensed and allocated in tgq,\,rong decision made by the greedy online algorithm to
interval betweer(i — 1)th andi-th requests served by channekchedule a request affects the performance more. Also, the
1, and defineb; similarly for channel2. Let A denote the greedy online algorithm serves requests of a larger density
total number of time slots betweei and H that are not petter than requests of a smaller density. When the system is
sensed or sensgd but not allocated for charinedan_d A" overloaded with requests, even the optimal offline algarith
the number of time slots after the last request is servegn not satisfy all requests. Thus, those with larger vadoat
by channell. Define B and B’ similarly for channel2. tend to be chosen, as in the greedy online algorithm. Albsati
Note that by the ordering of channels, when there is Or‘E{otted are strictly abové, even for those WithT:| # 0.
one request in the system, and both channels are availablgp, Figure 2(b), we evaluate the performance of Algo-
channel 1 will be used. It follows that < B. We then jthm |v.1 with heterogeneou®, channels. We use the same
have I = > s; + A+ A" = 3 b + B + B'. Therefore, 1 channel parameters as in the homogeneous case. The
H= E(Z Si +.A + A') = E(m)/mi + E(A) + E(A') (by parameters related t@> channels are as followst, (1) =
geometric distribution) andl = E(ns)/ms+E(B)+E(B').  .9134, m5(2) = 0.6324, m2(3) = 0.0975, Py (1) = 0.1419,
Note thatE(A')/H — 0 and E(B')/H — 0 whenH —  p (1) = 07922, P,(2) = 0.2218, P;(2) = 0.6595,

cc. Therefore 7+ = 3523 = {g:ﬁgﬂz; > mLosince P, (3) = 0.6557, Pr(3) = 0.2157. We observe similar results




radio networks with the objective of maximizing the social
T welfare. Our problem formulation takes into account both
T g spectrum uncertainty and sensing inaccuracy, which esable
éo_e/ dynamic spectrum access at small time scales. Using only
&o55) _— 5 channel statistics and real time channel states, we develop
T B Sy = s an optimal solution for serving a given set of spectrum
Requestduaton e duaten requests with various time elasticity. We then propose an
(2) Homogeneous’’; channels. (b) Heterogeneoud’, channels. )i e algorithm that achieves comparable performancéeas t
Fig..2. Performance qf online algo.rithm versus offline algorithreov offline algorithm. We further extend the online algorithmato
various request duration means with homogeneous and getezous online auction scheme, which ensures incentive compigibil
T> channels |(I:| = 3), respectively. for the SUs and also ’ id f - .
provides a way for trading off social
welfare and revenue. There are several open problems to be
solved. First, in practice, a more flexible form of spectrum
requests will be desirable. For instance, a request mayaask f
multiple chunks that may or may not be preemptive. Extending
the current solutions to this more general setting will bet pa
of our future work. Second, we plan to extend the problem
(a) Homogeneoud» channels. (b) Heterogeneoud: channels.  formulation by including the notion of spatial spectrumseu
Fig. 3. Tradeoff between social welfare and revenue over reservatiin addition to the time dimension considered in the paper.
price with homogeneous and heterogeneBushannels |(:| = 3), Third, we plan to relax the assumption on the i.i.d Bernoulli
respectivelyT1| = 0 in (a) and|7i| = 1 in (b). channels by considering correlated channels, which irglv
as in Figure 2(a): Algorithm IV.1 performs better with fewerSO|Ving anexploration vs. exploitatioproblem in the context

. . of an auction.
T: channels and denser requests. Again all ratios are a}mve REFERENCES
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